skip to main content


Search for: All records

Creators/Authors contains: "Ramirez-Ruiz, Enrico"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Dynamical perturbations from supermassive black hole (SMBH) binaries can increase the rates of tidal disruption events (TDEs). However, most previous work focuses on TDEs from the heavier black hole in the SMBH binary (SMBHB) system. In this work, we focus on the lighter black holes in SMBHB systems and show that they can experience a similarly dramatic increase in their TDE rate due to perturbations from a more massive companion. While the increase in TDEs around the more massive black hole is mostly due to chaotic orbital perturbations, we find that, around the smaller black hole, the eccentric Kozai–Lidov mechanism is dominant and capable of producing a comparably large number of TDEs. In this scenario, the mass derived from the light curve and spectra of TDEs caused by the lighter SMBH companion is expected to be significantly smaller than the SMBH mass estimated from galaxy scaling relations, which are dominated by the more massive companion. This apparent inconsistency can help find SMBHB candidates that are not currently accreting as active galactic nuclei and that are at separations too small for them to be resolved as two distinct sources. In the most extreme cases, these TDEs provide us with the exciting opportunity to study SMBHBs in galaxies where the primary SMBH is too massive to disrupt Sun-like stars.

     
    more » « less
  2. Abstract Upcoming LIGO–Virgo–KAGRA (LVK) observing runs are expected to detect a variety of inspiralling gravitational-wave (GW) events that come from black hole and neutron star binary mergers. Detection of noninspiral GW sources is also anticipated. We report the discovery of a new class of noninspiral GW sources—the end states of massive stars—that can produce the brightest simulated stochastic GW burst signal in the LVK bands known to date, and could be detectable in LVK run A+. Some dying massive stars launch bipolar relativistic jets, which inflate a turbulent energetic bubble—cocoon—inside of the star. We simulate such a system using state-of-the-art 3D general relativistic magnetohydrodynamic simulations and show that these cocoons emit quasi-isotropic GW emission in the LVK band, ∼10–100 Hz, over a characteristic jet activity timescale ∼10–100 s. Our first-principles simulations show that jets exhibit a wobbling behavior, in which case cocoon-powered GWs might be detected already in LVK run A+, but it is more likely that these GWs will be detected by the third-generation GW detectors with an estimated rate of ∼10 events yr −1 . The detection rate drops to ∼1% of that value if all jets were to feature a traditional axisymmetric structure instead of a wobble. Accompanied by electromagnetic emission from the energetic core-collapse supernova and the cocoon, we predict that collapsars are powerful multimessenger events. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Abstract

    The proximity and duration of the tidal disruption event ASASSN-14li led to the discovery of narrow, blueshifted absorption lines in X-rays and UV. The gas seen in X-ray absorption is consistent with bound material close to the apocenter of elliptical orbital paths, or with a disk wind similar to those seen in Seyfert-1 active galactic nuclei. We present a new analysis of the deepest high-resolution XMM-Newton and Chandra spectra of ASASSN-14li. Driven by the relative strengths of He-like and H-like charge states, the data require [N/C] ≥ 2.4, in qualitative agreement with UV spectral results. Flows of the kind seen in the X-ray spectrum of ASASSN-14li were not clearly predicted in simulations of TDEs; this left open the possibility that the observed absorption might be tied to gas released in prior active galactic nucleus (AGN) activity. However, the abundance pattern revealed in this analysis points to a single star rather than a standard AGN accretion flow comprised of myriad gas contributions. The simplest explanation of the data is likely that a moderately massive star (M≳ 3M) with significant CNO processing was disrupted. An alternative explanation is that a lower mass star was disrupted that had previously been stripped of its envelope. We discuss the strengths and limitations of our analysis and these interpretations.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Abstract

    The Milky Way is believed to host hundreds of millions of quiescent stellar-mass black holes (BHs). In the last decade, some of these objects have been potentially uncovered via gravitational microlensing events. All these detections resulted in a degeneracy between the velocity and the mass of the lens. This degeneracy has been lifted, for the first time, with the recent astrometric microlensing detection of OB110462. However, two independent studies reported very different lens masses for this event. Sahu et al. inferred a lens mass of 7.1 ± 1.3M, consistent with a BH, while Lam et al. inferred 1.6–4.2M, consistent with either a neutron star or a BH. Here, we study the landscape of isolated BHs formed in the field. In particular, we focus on the mass and center-of-mass speed of four subpopulations: isolated BHs from single-star origin, disrupted BHs of binary-star origin, main-sequence stars with a compact object companion, and double compact object mergers. Our model predicts that most (≳70%) isolated BHs in the Milky Way are of binary origin. However, noninteractions lead to most massive BHs (≳15–20M) being predominantly of single origin. Under the assumption that OB110462 is a free-floating compact object, we conclude that it is more likely to be a BH originally belonging to a binary system. Our results suggest that low-mass BH microlensing events can be useful to understand binary evolution of massive stars in the Milky Way, while high-mass BH lenses can be useful to probe single stellar evolution.

     
    more » « less
  5. Abstract

    Metal-poor stars in the Milky Way (MW) halo display large star-to-star dispersion in theirr-process abundance relative to lighter elements. This suggests a chemically diverse and unmixed interstellar medium (ISM) in the early universe. This study aims to help shed light on the impact of turbulent mixing, driven by core-collapse supernovae (cc-SNe), on ther-process abundance dispersal in galactic disks. To this end, we conduct a series of simulations of small-scale galaxy patches which resolve metal-mixing mechanisms at parsec scales. Our setup includes cc-SNe feedback and enrichment fromr-process sources. We find that the relative rate of ther-process events to cc-SNe is directly imprinted on the shape of ther-process distribution in the ISM with more frequent events causing more centrally peaked distributions. We consider also the fraction of metals that is lost on galactic winds and find that cc-SNe are able to efficiently launch highly enriched winds, especially in smaller galaxy models. This result suggests that smaller systems, e.g., dwarf galaxies, may require higher levels of enrichment in order to achieve similar meanr-process abundances as MW-like progenitors systems. Finally, we are able to place novel constraints on the production rate ofr-process elements in the MW,6×107Myr1ṁrp4.7×104Myr1, imposed by accurately reproducing the mean and dispersion of [Eu/Fe] in metal-poor stars. Our results are consistent with independent estimates from alternate methods and constitute a significant reduction in the permitted parameter space.

     
    more » « less
  6. Abstract

    The engulfment of substellar bodies (SBs), such as brown dwarfs and planets, by giant stars is a possible explanation for rapidly rotating giants, lithium-rich giants, and the presence of SBs in close orbits around subdwarfs and white dwarfs. We perform three-dimensional hydrodynamical simulations of the flow in the vicinity of an engulfed SB. We model the SB as a rigid body with a reflective surface because it cannot accrete. This reflective boundary changes the flow morphology to resemble that of engulfed compact objects with outflows. We measure the drag coefficients for the ram-pressure and gravitational drag forces acting on the SB, and use them to integrate its trajectory inside the star. We find that engulfment can increase the luminosity of a 1Mstar by up to a few orders of magnitude. The time for the star to return to its original luminosity is up to a few thousand years when the star has evolved to ≈10Rand up to a few decades at the tip of the red giant branch (RGB). No SBs can eject the envelope of a 1Mstar before it evolves to ≈10Rif the orbit of the SB is the only energy source contributing to the ejection. In contrast, SBs as small as ≈10MJupcan eject the envelope at the tip of the RGB. The numerical framework we introduce here can be used to study planetary engulfment in a simplified setting that captures the physics of the flow at the scale of the SB.

     
    more » « less
  7. Abstract Stars grazing supermassive black holes (SMBHs) on bound orbits may survive tidal disruption, causing periodic flares. Inspired by the recent discovery of the periodic nuclear transient ASASSN-14ko, a promising candidate for a repeating tidal disruption event (TDE), we study the tidal deformation of stars approaching SMBHs on eccentric orbits. With both analytical and hydrodynamic methods, we show the overall tidal deformation of a star is similar to that in a parabolic orbit provided that the eccentricity is above a critical value. This allows one to make use of existing simulation libraries from parabolic encounters to calculate the mass fallback rate in eccentric TDEs. We find the flare structures of eccentric TDEs show a complicated dependence on both the SMBH mass and the orbital period. For stars orbiting SMBHs with relatively short periods, we predict significantly shorter-lived duration flares than those in parabolic TDEs, which can be used to predict repeating events if the mass of the SMBH can be independently measured. Using an adiabatic mass-loss model, we study the flare evolution over multiple passages, and show the evolved stars can survive many more passages than main-sequence stars. We apply this theoretical framework to the repeating TDE candidate ASASSN-14ko and suggest that its recurrent flares originate from a moderately massive ( M ≳ 1 M ⊙ ), extended (likely ≈10 R ⊙ ), evolved star on a grazing, bound orbit around the SMBH. Future hydrodynamic simulations of multiple tidal interactions will enable realistic models on the individual flare structure and the evolution over multiple flares. 
    more » « less
  8. Common-envelope evolution is a stage in binary system evolution in which a giant star engulfs a companion. The standard energy formalism is an analytical framework to estimate the amount of energy transferred from the companion's shrinking orbit into the envelope of the star that engulfed it. We show analytically that this energy transfer is larger than predicted by the standard formalism. As the orbit of the companion shrinks, the mass it encloses becomes smaller, and the companion is less bound than if the enclosed mass had remained constant. Therefore, more energy must be transferred to the envelope for the orbit to shrink further. We derive a revised energy formalism that accounts for this effect, and discuss its consequences in two contexts: the formation of neutron star binaries, and the engulfment of planets and brown dwarfs by their host stars. The companion mass required to eject the stellar envelope is smaller by up to 50% , leading to differences in common-envelope evolution outcomes. The energy deposition in the outer envelope of the star, which is related to the transient luminosity and duration, is up to a factor of ≈7 higher. Common-envelope efficiency values above unity, as defined in the literature, are thus not necessarily unphysical, and result at least partly from an incomplete description of the energy deposition. The revised energy formalism presented here can improve our understanding of stellar merger and common-envelope observations and simulations. 
    more » « less
  9. Abstract

    Stellar-mass black holes can become embedded within the disks of active galactic nuclei (AGNs). Afterwards, their interactions are mediated by their gaseous surroundings. Here, we study the evolution of stellar-mass binary black holes (BBHs) embedded within AGN disks using three-dimensional hydrodynamic simulations and analytic methods, focusing on environments where the AGN disk scale heightHis ≳ the BBH sphere of influence. We model the local surroundings of the embedded BBHs using a wind tunnel formalism and characterize different accretion regimes based on the local properties of the disk. We develop prescriptions for accretion and drag for embedded BBHs. Using these prescriptions with AGN disk models that can represent the Toomre-unstable outer regions of AGN disks, we study the long-term evolution of BBHs as they migrate through the disk. We find that BBHs typically merge within ≲1–30 Myr, increasing their mass significantly in the process, allowing BBHs to enter (or cross) the pair-instability supernova mass gap. The BBH accretion rate often exceeds the Eddington limit, sometimes by several orders of magnitude. Many embedded BBHs will merge before migrating significantly in the disk. We also discuss possible electromagnetic signatures during and following the inspiral, finding that it is generally unlikely for the bolometric luminosity of the BBH to exceed the AGN luminosity.

     
    more » « less
  10. Abstract

    We present preexplosion optical and infrared (IR) imaging at the site of the type II supernova (SN II) 2023ixf in Messier 101 at 6.9 Mpc. We astrometrically registered a ground-based image of SN 2023ixf to archival Hubble Space Telescope (HST), Spitzer Space Telescope (Spitzer), and ground-based near-IR images. A single point source is detected at a position consistent with the SN at wavelengths ranging from HSTRband to Spitzer 4.5μm. Fitting with blackbody and red supergiant (RSG) spectral energy distributions (SEDs), we find that the source is anomalously cool with a significant mid-IR excess. We interpret this SED as reprocessed emission in a 8600Rcircumstellar shell of dusty material with a mass ∼5 × 10−5Msurrounding alog(L/L)=4.74±0.07andTeff=3920160+200K RSG. This luminosity is consistent with RSG models of initial mass 11M, depending on assumptions of rotation and overshooting. In addition, the counterpart was significantly variable in preexplosion Spitzer 3.6 and 4.5μm imaging, exhibiting ∼70% variability in both bands correlated across 9 yr and 29 epochs of imaging. The variations appear to have a timescale of 2.8 yr, which is consistent withκ-mechanism pulsations observed in RSGs, albeit with a much larger amplitude than RSGs such asαOrionis (Betelgeuse).

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024